
Path-integral analysis of the propagator of two coupled graded-index waveguides

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 4653

(http://iopscience.iop.org/0305-4470/26/18/029)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 19:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 26 (1993) 4653-4678. Printed in the UK 

- 

Path-integral analysis of the propagator of two coupled 
graded-index waveguides 

C C Constantinou? and Raymund C Jonesf 
t School of Electronic and Electrical Engineering, 
$School of Physics and Space Research, The University of Birmingham, Edgbaston, 
Birmingham B152?T, UK 

Received 13 November 1992, in final form 4 May 1993 

Abstrad. The method of path integration is used to study coupled graded-index wave- 
guides in the context of paraxial, scalar-wave optics. The cases of strong and intermediate 
strength coupling for waveguides of arbitrary and variable spacing a r i  considered, and a 
variational estimate of the propagator of such a waveguide stmture is derived in dosed 
form. The complete variational calculation is presented for the case of parallel waveguides 
only, and the propagator, lowest-order-mode field prolile, the first two lowest-order-mode 
propagation constants, and the beat length of the srmchlre are determined in closed form. 

1. Introduction 

The propagation of optical waves in coupled waveguide systems is of great importance 
in the design of modem optical communication systems. Parallel and non-parallel 
waveguide couplers form an integral part of most optical systems, such as switches, 
power dividers, frequency and mode selectors and, therefore, filters and modulators. 
Since all communications systems essentially consist of switches, modulators, filters 
and transmission lines, it is evident that the performance of such structures critically 
affects the performance characteristics of optical communication networks in their 
entirety (Huang and Haus 1990). Detailed knowledge of the coupling between 
intersecting and branching waveguides in the region where they merge to foim a taper 
(that is the region of strong coupling between the two waveguides), is well known to 
be very important in the design and operation of such structures (Burns and Milton 
1975, 1990). Our ability to control the crosstalk (whether wanted or unwanted) 
between waveguides in close proximity determines, for example, whether an optical y -  
junction behaves as a power splitter or a mode selectodconverter (Yajima 1974). 
Some examples of relevant waveguide structures such as switches and waveguide 
branches and intersections are shown schematically in. figure 1. 

Most of the work conceming the analysis of coupled waveguide systems tends to 
fall into one of three categories: 

(i) Step-index waveguides (Marcatilli 1969, Marcuse 1982- see section 10.3 in 
particular). 

(ii) Weakly coupled waveguides, where the overlap integral between the modes 
of the individual (isolated) waveguides is used to find the coupling coefficient 
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Regions in which the coupling between 
waveguides is significant 

Figure 1. (a) A simple integrated optical switch: a directional coupler built on an elenro- 
optic material has an effective length which varies according to the voltage applied on the 
electrodes (shown hatched in the drawing). (b) Schematic examples of waveguide 
junctions and branches: the regions indicated are the regions in which the two waveguides 
are either strongly coupled, or have merged into a single waveguide. These regions 
critically determine the propagation characteristics of each waveguide structure shown. 

relevant to the problem (Miller 1954, Yariv 1973, Snyder and Love 1983, 
Hardy and Streifer 1985, Huang and Haus 1990, Bums and Milton 1990). The 
assumption of weak coupling is not always explicitly stated, nor is it always 
built into the formalism of the work to which we refer above, but is 
introduced implicitly by virtue of the fact that it is the modes of the uniform, 
individual, uncoupled waveguides which are used as basis functions in the 
analyses of these various problems. This is a point which has caused some 
controversy on the validity and limitations of 'conventional' coupled mode 
theory (Hardy and Streifer 1985, Haus et al. 1987). 

(iii) Numerical simulations, such as the beam propagation method (Cullen 1985, 
Neyer et al. 1985). 

In this paper we use the method of path integration (Feynman and Hibbs 1965) in 
conjunction with Feynman's variational technique in order to obtain in closed form 
the Green function, or propagator of the paraxial, scalar Helmholtz equation for two 
graded-index waveguides in close proximity. Path integration has been used as an 
analytical tool in the study of guided-wave optics over a number of years (Eichmann 
1971, Eve 1976, Hannay 1977, G6mez-Reino and Lifiares 1987, Constantinou 1991). 
A detailed discussion of the validity of the paraxial approximation and the appropri- 
ateness of its use in the modelling of integrated-optical'waveguides, can be found in a 
series of papers, henceforth referred to as U a .  CJb, u c  and IC (Constantinou and Jones 
1991a, b, 1992, Jones and Constantinou 1992.). The model refractive index distribu- 
tion we have chosen to work with is described in detail in the next section. 

Although we begin our calculations by considering two graded-index waveguides 
whose separation can vary arbitrarily, we shall soon see that our results are expected 
to be valid only in the cases of strong and intermediate strength coupling and are thus 
complementary to much of the existing work. However, although most of our analysis 
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concerns the case of variable waveguide separation, the maximization required by the 
variational technique employed here, can be performed rigorously only for parallel 
waveguides. An extension of the work to the case of non-parallel waveguides is 
proposed at the end of this paper. 

This paper presents a number of new results. In section 5 we find a closed-form 
expression for the propagator of two parallel, strongly coupled graded+& -x wave- 
guides. Expressionsare presented for the lowest-order-mode field profile and for the 
propagation constants describing the fields of the two lowest-order modes of the two 
parallel waveguides. From these latter two propagation constants, we have also 
obtained a closed-form variational expression for the beat length of the two coupled 
waveguides. The beat length is the distance along the two parallel waveguides over 
which a complete energy exchange cycle takes place, and is therefore a quantity of 
considerable engineering interest (Snyder and Love 1983). Although the calculation 
presented here was carried out for a mathematically tractable idealization of the 
refractive index distribution corresponding to two coupled waveguides, the closed- 
form results arrived at for the propagator, beat length and lowest-order-mode field 
profile, provide us with insight into the strong coupling limit, by allowing ns to see 
explicitly how the various quantities of interest depend on the refractive index 
parameters. To the best of our knowledge, strongly coupled waveguides have only 
been studied through numerical simulations (Cullen 1985). The present analysis is not 
intended to replace such simulation methods, which are in a sense more powerful 
since they can deal with arbitrary refractive index distributions, but is instead intended 
to complement them. 

2. The model refractive index distribution 

Two integrated optical graded-index waveguides which are in close proximity are 
usually manufactured by diffusing metallic atoms, such as silver or titanium, into a 
suitable substrate, such as LiNb03 or quartz. By taking a suitabIe cross-section of such 
an arrangement of waveguides, the refractive index distribution will have the general 
form shown in figure 2(a). Near the centres of each individual guide the refractive 

~ , ,^i"A=;a4b4 
nsubstrate _- 

X - b  .O b -2 b- X 

Figure 2. (a) The refractive index distribution of two parallel graded-index waveguides in 
close proximity, is depicted here schematically. In practice, A increases with the wave- 
guide separation, 2b, to a value fz-n,,,,,.. (b) The model refractive index distribution of 
equation (2.1j. 
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index decreases roughly quadratically with distance from the centre of that guide. At 
large distances from either guide, the refractive index settles down to that of the 
substrate. It has been shown in a a ,  ub, u o  and JC that we can construct a mathematical 
model of a waveguide in which we allow the model refractive index distribution to 
take non-physical (negative) values at large distances from the guide, provided that 
the fields themselves, and hence the energy transport, associated with these non- 
physical regions are very small, and at the same time we restrict our considerations to 
multimode waveguides and waveguide modes of sufficiently low order. This assump- 
tion must be checked a posteriori, and is satisfied in the model calculations ua, m, CJC 

and JC for a single guide. We construct a similar model to describe the problem of two 
parallel waveguides by modelling the physical distribution shown in figure 2(a) by a 
suitable chosen function (described below) which has the general form shown in figure 
2(b). The above approximations make the problem analytically tractable. In C J ~ ,  u b ,  

uc and JC (see also G6mez-Reino and Lifiares 1987) we have demonstrated that, 
within the paraxial approximation, the full three-dimensional waveguide problem is 
separable and separates into two independent two-dimensional propagation prob- 
lems. We define the z-axis of our chosen coordinate system to be parallel to the axes 
of the two waveguides, and the x-axis to be the axis passing through the centres of the 
two guides. Henceforth we will omit any y-dependent terms in the expressions for the 
refractive index and the propagator, and will instead concentrate on the xz- 
dependence of such functions only. Results for the full three-dimensional problem can 
be obtained by simply multiplying the appropriate results for the two independent 
two-dimensional probl&ns together (ua, ab, uc and JC). 

C C Constantimu and R C Jones 

The two-dimensional model refractive index distribution, 

n(x)=n,( l  -aJ(x2- b2)’) (2.1) 
which is plotted in Figure 2(b) has the correct shape required to give a reasonable 
description of the refractive index around and within the guides (Figure 2(a)). If we 
wish to consider coupled waveguides of arbitrary and varying separation 2b(z), we 
can re-write the above expression as, 

n(x, z)  =%(l -a4(xz-  bZ(z))’). (2.2) 
Equation (2.2) accurately models the situation in which, as the distance between the 
two waveguides increases, the refractive index between the waveguides, becomes ever 
smaller until the two waveguides are effectively isolated, in which case it reaches the 
value of %uMrate. In OUT model we effectively have a substrate for which nluMralralc+ - m , 
which also guarantees waveguide isolation. 

3. Theory 

Paraxial propagation along the z-axis of a medium with refractive index distribution 
n(x,  z )  is described by the Green function, or propagator, of the scalar Helmholtz 
equation which satisfies 

( i  a 1 az n(x ,z ) )  +--+- K(x,z ;xo ,zo)=6(x-x , )6(z -z , )  ( 3 4  k a z  2k2axZ no 
_- 

It has been shown by a number of authors (Eichmann, 1971, Eve, 1976, Schulman 
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Figure3. The refractive index distribution of equation (3.3) used in the variational 
calculation. 

1981, G6mez-Reino and Lhiares 1987, u a .  u b ,  UCJC), that the propagatc)r can be 
written as the path integral 

in which 
z@=x 

4 Z O )  =a 
J Wz) 

represents a sum over all optical ray paths which begin at the point (xo , zo) and pass 
through the point (x ,  z )  (Feynman and Hibbs 1965). The wavenumber k is defined to 
be k - h n d k ,  where A0 is the free-space wavelength. Unfortunately it is not possible 
to evaluate the above path integral in closed form exactly, because the exponent in 
(3.2) is quartic in the path variable ~ ( 5 ) .  An approximate evaluation of the above path 
integral is possible though, if we make use of the Feynman variational technique 
(Feynman and Hibbs 1965), which we briefly summarize below. 

A variational approximation to the propagator of a waveguide having a refractive 
index distribution described by equation (2.2), can be derived by considering the 
propagator of a simpler waveguide structure, for which we can evaluate exactly the 
corresponding path integral. The simpler (and soluble) waveguide structure is chosen 
so that it shares a number of features of optical propagation with the model refractive 
index distribution (2.2) which are felt to be important. We choose thus model 
refractive index used in such a variational calculation to be 

1 
n(x, z )  =no (1 -5 cz(zh2). (3.3) 

It is well known that light tends to concentrate in regions of locally high refractive 
index (Born and Wolf 1980). The refractive index distribution (3.3) (shown in figure 
3) tends to concentrate the light around its maximum on the z-axis. When the two 



4658 

waveguides are sufficiently close (i.e. when 2b(z) is small and the coupling between 
the guides is strong), the model refractive index distribution (2.2) tends to concentrate 
the light around the two maxima which are ‘close to the z-axis. Thus both (2.2) and 
(3.3) share the property of confining light in the vicinity of the z-axis of the chosen 
coordinate system. Both refractive index distributions then have broadly similar 
waveguiding properties. The spacing between the two waveguides in (2.2) is 2b(z),  
the width of the ‘variational waveguide’ in (3.3) is proportional to l/c(z): both are 
arbitrary functions of the z-coordinate-an important common feature of the two 
refractive index distributions. There is no aprion’ relation between b(z) and c(z). The 
above two common features make the refractive index distribution (3.3) suitable for 
use in the Feynman variational technique in order to determine an approximate 
expression for the propagator of the refractive index distribution (2.2), and is likely to 
be a sensible approximation when the guides are strongly coupled. 

In order to state the Variational principle for this problem, we must first define a 
number of quantities: the simpler and soluble refractive index distribution used in this 
technique (i.e. the refractive index distribution (3.3) in our case), will be called the 
trial refractive index, and all the quantities associated with it (e.g. its associated trial 
propagator), will be labelled with the subscript t. The optical path length associated 
,with a refractive index distribution, n(x, z). is defined in the usual way to be 
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We will also need the functional average, denoted by angular brackets (.) and defined 
l)Y I W ~ ) ~ ; [ ~ ( ~ ) l e x p ( i k s J  

(3.5) 
(S[x‘z’l)- 1 ax(z)exp{ikS,} ’ 

Feynman’s variational technique (Feynman and E b b s  1965) as modified by 
Samathiyakanit (Samathiyakanit 1972, Constantinou 1991) states that the quantity 

K(x,  z;xo,zo)=K,(x,  z ;xo ,z0)exp[ i~~~-SJ1  (3.6) 
can be used as a satisfactory approximation to the propagator of the medium with 
refractive index n(x) ,  provided that we maximize the lowest-order-mode propagation 
canstant, Bo, of t h i s  latter medium 

with respect to any free variational parameter; p is the‘analytically continued value of 
-i(z-zo) and pm is the lowest-order-mode propagation constant of the simpler 
variational waveguide. This is analogous to the process of minimizing the ground state 
energy level in variational calculations in quantum mechanics, the only difference 
being that the spectrum of modal propagation constants is bounded from above rather 
than below as is the case in mechanics (Constantinou 1991). It is evident that this 
formulation of the variational technique requires that all the refractive index distribu- 
tions be independent of the variable z, in order to ensure that the quantities Bo and pm 
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be well delined quantities. The problem of refractive index distributions which vary 
with z is not rigorously resolved in this paper-an approximate solution for adiabati- 
cally varying waveguides is suggested in section 6 instead. 

4. The calculation of the approximate propagator 

Without loss of generality we neglect a pre-factor exp[ik(z - zo)] which oocurs in the 
full propagator expression and arises from the non-zero, constant part, no, of the 
refractive index; the propagator corresponding to the trial refractive index distribu- 
tion (3.3) is then given by 

We will hereafter omit all such exponential pre-factors from all subsequent propaga- 
tor expressions for the sake of brevity. The above path integral can be readily 
evaluated (UC, G6mez-Reino and Litiares 1987) and gives, 

where f-f(z, zo) satisfies the differential equation, 

with the boundary conditions 

Since the term 

L 

which is common to both the optical path lengths S and S,, cancels out in equations 
(3.6) and (3.7), it is convenient to redefine the optical path lengths S and S,, so that 
they are now given by 

S f -  - -AI:odcc2(c)x2(c). 2 (4.6) 

in order to simplify the calculation of the factor exp[ik(S-S,)] in equation (3.6). 
Furthermore, the average (.) defined in (3.5) is now given by 
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The denominator of the above expression is identical to (4.1) and its closed-form 
expression is therefore given by (4.2). The averaged quantities (S) and (SJ can be 
expressed solely in terms of (A-'(<)) and (x4(g)). The latter two averages are readily 
computed from the characteristic functional CP of the process x ( c )  (Feynman and 
Hibbs 1965), defined by 

C C Constantinou and R C Jones 

0 = (exp [ d ~ g ( ~ ) x ( t ) } )  (4.8) 

where g(2;) is an arbitrary, continuous function of 5. Successive functional differentia- 
tions of @ with respect to g(<), show that, 

In appendix 1 we present the detailed evaluation of expression (4.8), which yields 

(4.10) 

where G(C; e ' )  is the Green function of equation (4.3) with homogeneous boundary 
conditions at C = z,, and 5= z, and is defined formally and derived in closed form in 
appendix 1. Using equation (4.9) and functionally differentiating (4.10) with 
respect to g(C), then gives the following closed-form expressions for (~'(6)) and 
(x4(5)): 

and 

(4.11) 

(4.12) 

Finally, we see from (4.5) and (4.6) that the difference between the optical path 
lengths associated with the trial and exact propagators for the coupled waveguide 
system is given by 

ik(S-S,)= -ika4/ d2;b4(5)+ik/ d5[2a4b2(5)+cz(6) /2](xz(5))  
2D 20 

- ika4 d5(x4(5)). 
'0 

(4.13) 
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Substituting for the terms ( ~ ’ ( 5 ) )  and ( ~ ‘ ( 5 ) )  from equations (4.11) and (4.12), shows 
that equation (4.13) can be written as, 

An approximate final closed-form expression for the coupled waveguide propaga- 
tor is then obtained by combining equations (3.6), (4.2) and (4.14), and is, 

(4.15) 

To the best of our knowledge, the above approximate but closed-form expression for 
the propagator of a model of two coupled graded-index waveguides is entirely new. 
Using the well known analogy between optics and mechanics (Constantinou 1991) 
which establishes a correspondence between the refractive index in optics and the 
potential in mechanics, we see that in the context of quantum mechanics, expression 
(4.15) gives an approximate form for the propagator of an anharmonic oscillator with 
strong coupling between the individual wells of the double well. It is well known 
(Schulman 1981) that the description of the motion of an anharmonic oscillator is 
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closely linked to problems such as instantons in quantum field theory and second- 
order phase transitions in statistical mechanics. Therefore, the above new result has 
potential uses outside the context in which we now present it. 

The propagator (4.15) does not constitute the best variational approximation to 
: I the propagation problem in the coupled graded-index waveguides system, until the 

optimal value of the function c(z) and thus of f(z, zo) is used in (4.15). As we have 
' already seen in section 3, the Feynman variational technique requires that we 
j maximize the quantity Bo calculated in the limit (z - z0)- -im . The lowest-order- 

mode propagation constant, Bo, and the trial medium lowest-order-mode propagation 
constant, Bt0, are quantities which can only be formally defined for waveguides of 
uniform cross-section (Snyder and Love 1983). The case in which both Bo and Bm can 
be formally defined corresponds to two parallel graded-index waveguides. In this 
relatively simple problem we replace the functions b(z) and c(z) in equations (2.2) 
and (3.3) by the two scalar parameters b and c, respectively, which are independent of 
z. We then determine the lowest-order propagation constant Bo in terms of these 
parameters, and finallymaximize~o with respect to c. The more interesting case where 
b(z) and c(z) are arbitrary functions of z cannot be treated exactly here. In a separate 
section at the end of this paper we propose an ansatz for completing the variational 
calculation and speculate on possible ways to complete the variational calculation 
more formally. 

An important property of the propagator (4.15) is that it contains a number of 
exponential terms, some of which have real exponents, and some of which have 
imaginary exponents. The solutions of equation (4.3) for real functions c(z)  are 
always oscillatory in nature, since the functionf(z, zo) and its second derivative with 
respect to the variable z are always of opposite sign. The presence of oscillatory terms 
in the real exponents implies that at any given transverse coordinate position x ,  the 
amplitude of the propagating wave will alternately increase and then decrease with 
increasing z. This is precisely what we expect to happen in waveguides which are in 
close proximity: their fields are coupled and as a consequence, there is energy 
exchange between them (Snyder and Love 1983). As we will shortly see, when the 
waveguides are parallel the exchange is exactly periodic in z. 

C C Constantinou and R C Jones 

I 

5. The approximate propagator and modes of two parallel, coupled graded-index 
waveguides 

When we are considering two parallel, coupled graded-index waveguides, their 
separation 2b(z) is independent of z. We may therefore set b(z)=b, and c(z)=c, 
where both b and c are now constants. In t h i s  case the taper functionflz, zo) defined 
by (4.3) and (4.4) is simply given by, 

1 
f(z, to) =- sin(c(z-20)). 

C (5.1) 

The integrals of f(z, z,,) which appear in the expression for the coupled waveguide 
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propagator (4.15) are simple trigonometric integrals which can be readily evaluated . ~~~ to 
give 

I kc a4bz 1 
)"'exp{ - ('+;1> (1 - c(z - zi)cot(c(z - zo))) 2zi sin(c(2 -~zo)) K(x,  z ;  xo, 20) = 

xexp i k ( l -a4b4) ( z - zo )  I 
)I - cos(c(2 - 2 0 ) )  

ikc 
x exp [ sin(c(z -~zo) )  ( ( x z + ~ )  (i cos(c(z - zo)) 

("I"" 1)( 
c(z-20) + z+- -cos(c(2-ziJ)) 4 sin(c(z - zo)) 

(l-c(z-z~)cot(c(z-z~))) 

- 2 0 )  

sin(+ - zo)) 
ik 

+&'xi ( [ 1 - I .  sin2(c(z -zo)) - cos(c(z -zo)) 
sin(c(2 - 2,)) 3 - 1  c(z-zo) 

This closed-form result giving an approximate propigator of two coupled graded- 
index waveguides is, to the best of our knowledge, new. Although the approximate 
propagator of the anharmonic oscillator in quantum mechanics has been derived in 
the past using other methods (Schulman 1981, Wiegel 1986), Feynman's variational 
method has never been applied to this problem before. 
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The propagator (5.2) exhibits the important feature to which we alluded briefly at 
the end of the previous section. With the exception of a transient response for small 
(z - zO), all the exponential terms in (5.2) are periodic in (z - zo). This periodic repeat 
distance is known in optical engineering as the beat length, z, (Snyder and Love 
1983), and is given by 

Zb'27t/C. (5.3) 

The simple dependence of the beat length on the 'variational waveguide' parameter c 
is a result which could not be anticipated a priori and can only be arrived at through 
the use of the Feynman variational technique and the detailed examination of the 
resulting propagator expression (5.2). The functional dependence of zb on the 
parameters a and b will be fixed when we complete the variational maximisation of Bo 
which is defined in (3.7). The final result is given in (5.14). It is important to stress that 
this process of maximizing Sodoes not in any way imply that either the refractive index 
profiles or the modal fded distributions of the exact and variational guides are 
matched. The beat length is an important quantity which we must be able to predict 
accurately in order to design useful devices such as directional couplers (Lee 1986, 
Snyder and Love 1983, Tamir 1990). Inaccurate determination of the beat length can 
result in designing power dividers, modulators and switches with undesirable extinc- 
tion ratios, or even worse improper operating characteristics resulting in unwanted 
crosstalk in an optical communication system. 

We are now in a position to perform the maximization required by the variational 
method in order to obtain c and through (5.3), the beat length zb. In order to 
maximize the lowest-order-mode propagation constant of the coupled waveguide 
structure, we first need to make the analytic continuation 

z-z~=i,u (5.4) 

and consider the limit of large negativep. In this limit, we have, 

and 

exp(-w) 
2 '  cos(c(z - zo)) = cos(ipc) = 

The expression (5.2) for the propagator then becomes, 

9a4 a4b2 1 a4b2 1 

8kc ( c 4) ( c2 4) 
+--j- y+- - kC(X2+xg) 

3a ka4 
C (5.7) 

where we have negelected all the terms multiplied by any power of exp(+pc). Taking 
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the natural logarithm of the above expression, dividing by -p and letting p+ - m 
finally gives 

= ( k - c / 2 ) +  (5.8) 

The first two terms k - c/2 constitute the lowest-order-mode propagation constant, 
Bto, of the variational trial waveguide (see section 3). According to the variational 
principle, we must now m a x i h e  Bo with respect to c. Thus, we need to solve the 
equation 

q0 1 a4b2 1 3a4 +-+-- _= 
cpc .2  c2 4 2kC3-O (5.9) 

for the parameter c. In order to ensure that the value of c given by (5.9) makes ,Bo a 
maximum, it must also satisfy, 

(5.10) 

which implies that 

- (5.11) 
' 9  

4kbz' . 
C i -  

Thus in order to determine c we must solve the cubic equation, 
c3 + 2a4b2c- 3a4/k= 0 (5.12) 

for one of its real roots, which must be less than c<9/4kb2. The discriminant of the 
cubic equation D can be easily determined (Abramowitz and Stegun 1965, paragraph 
3.8.2) and is found to be given by 

8a"b6 9aB DE-.-- 
21 +% (5.13) 

which is always positive. This implies that the cubic equation has only one real root 
given by (Abramowitz and Stegun 1965, paragraph 3.8.2), 

c = (g) (( (1 + ($ 'Fa4b6) :+ 1) * - (( 1 + ( $'Pa4b6)"2 - 1) *) . (5.14) 

A change of variable to f =  ((4)5k2a4b6)'6, transforms equation (5.14) and the inequa- 
lity (5.11) to 

and 

(5.15) 

(5.16) 

respectively. The inequality (5.16) thus becomes, 
((1 + t y +  1)1'3- ((I + t y -  1 1 m a - 2 .  (5.17) 
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This inequality holds for all values of t in the range O=St<+ m, as can be seen by 
expanding the LHS of (5.17) into an infinite series into the variable Ut. Thus we see 
that the value of c in (5.14) is always the optimal solution to the variational problem, 
for all values of the parameters a,  b and k. 

The explicit form of the dimensionless parameter t is worth examining here, 
because it gives us some insight into the physical parameters governing the coupling 
mechanism. t is proportional to (kbln)", where kbln is the separation of the two 
guides measured in wavelengths, and to ( ~ ~ b ~ ) " ~ ,  where a4b4 is the ratio of the depth of 
the refractive index on the z-axis to its peak value at the centre of the two waveguides. 
The fractional depth in the refractive index on the z-axis corresponds to the height of 
the potential barrier in the quantum mechanical problem of electronic motion in a 
double potential well. The two dimensionless parameters a4b4 and kbln are also 
known from other work (Landau and Lifshitz 1977, Wiegell973) to be important in 
determining c. The qualitative dependence of c on these parameters predicted by all 
methods of analysis (including ours) is that the beat length increases monotonically 
with the separation of the two guides and the fractional depth of the refractive index 
between them. 

The expression for the parameter c (5.14) has a number of important features 
worth discussing. For the sake of convenience in the discussion below, we define the 
corresponding dimensionless parameter c' by c'=(k/3a4)'"c. We can easily see that 
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c, = ((1 + t T +  1) - ('1 + t y - l ) l D  
(5.18) 

A plot of c'  against t is shown in figure 4. We see that for any given fixed values of a 
and A, c' is a monotonically decreasing function of b. For the particular choice of 
a = n . , / A , , ~  (an extreme case) and b =Adno, it is found that llc=5A&,. A nonlinear 
least-squares fit algorithm shows that the optimum description of the above curve is 

which resembles neither an exponential, nor a Gaussian function. In figure 4 we have 
also plotted, for the sake of comparison, the curve described by equation (5.19) as 
well as the exponential and Gaussian curves which best fit the exact solution. 

To the best of our knowledge there exists only one path-integral analysis of motion 
in a double potential well, and we believe this latter analysis to be cruder than our 
variational calculation. This latter approximate method was developed by Wiegel 
(1973, 1975) in his study of Brownian motion in a field of force, and is called the 
hopping paths approximation. Briefly, the hopping paths approximation consists of 
the following logical steps: the Brownian particle (corresponding to a ray of light in 
the optical problem) spends most of its time at the bottom of the adjacent potential 
wells and thus the classical action corresponding to this section of its path can be 
calculated easily. We then assume that the particle 'hops' between the bottoms of 
these two adjacent potential wells at discrete times tl; tz, t3, etc. The hopping paths 
approximation results in c' being described by an exponential function, which does 
not agree with our result (5.14). 

Rather more conventional approximate analyses, such as the weak coupling 
approximation, using differential equations, also tend to give a result which is an 
exponential function of some kind (Landau and Lifshitz 1977, Marcuse 1982, Lee 
1986, Burns and Milton 1990). 

Using equation (5.18) we can see that for large values of the dimensionless 

c' =e~p{-0.7t'.~? (5.19) 
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parameter t, e' - (2/3t'). The physical significance of having a large value oft  is that i t  
corresponds either to well separated waveguides, or to waveguides separated by a 
very deep region of low refractive index. Therefore, the limit of large t is that of the 
weak coupling approximation. Our results predict that the beat length increases as 9, 
 whereas most other analyses predict at least an exponential rise for large t. This 

: discrepancy arises from the fact. that for large separations andlor well isolated 
I waveguides, the parabolic refractive index distribution which we have used as the 

starting point in the variational calculation ceases to be an acceptable trial variational 
approximation to the refractive index profile shown in figure 2(b). Therefore, in the 
limit f>> 1 our result is not as reliable as those resulting from other analyses (Wiegel 
1973, 1975, Landau and Lifshitz 1977, Marcuse 1982, Lee 1986, Bums and Milton 
1990). Nevertheless, in the limit of small f, or equivalently the case of strongly coupled 
waveguides, our model is likely to be more reliable than the models described above, 
since its derivation does not involve any simplifying assumptions. It should be stressed 
that the limit tQ 1, or equivalently (/2a4b6)"4 1, is to be treated as a criterion and not 
as a quantitative estimate for the validity of the strong coupling theory. 
Unfortunately, we have not found any experimental data which would check whether 
our predictions are' better or worse than those of existing theories. In principle an 
experiment along the lines of the one described in Feit et al. (1983) together with the 
method of Schmidt and Kaminow (1974) for measuring diffusant concentrations can 
be devised to measure the beat length of strongly coupled waveguides and their 
refractive index~distributions, respectively, and hence test our theoretical predictions. 
It would, of course, be necesary to determine values of the parameters a and b in 
equation (2.1) in order to obtain a best fit between the measured refractive index 
distribution and the one described by equation (2.1). Alternatively, the predictions of 
our approach could be compared to numerical simulations. We are presently looking 
into comparisons with numerical simulations such as the beam propagation method 
(Neyer et al. 1985). 

Gaussian 

/best A exact f i t  
Y. " - n 
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b / h  
F i m 4 .  The dimensionless coupling parameter c' for the two coupled graded-index 
waveguide problem, plotted against the guide separation parameter 1. The exact curve 
corresponding to equation (5.18) is shown together with the various fitted exponential- 
type curves for camparison. 
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It is well known (see for example Feynman and Hibbs 1965) that useful infor- 
mation, such as the various modal field profiles and their propagation constants, can 
be extracted from the closed-form expression for the propagator of any waveguiding 
structure whose cross-sectional refractive index distribution is invariant along the z- 
axis. Furthermore, the closed-form expression for the propagator can be used to study 
the propagation of any scalar field distribution through such waveguiding structures. 
In this paper we limit our considerations to the study of the two lowest-order modes of 
the two parallel, coupled graded-index waveguides only. 

The procedure we use for extracting the information about the modes of the 
coupled waveguide system is that presented in chapter 8 of Feynman and Hibbs 
(1965). Expanding all the trigonometric functions in the expression for the propagator 
(5.2) into their Maclaurin series in the variable exp(-ic(z-z,)), and retaining only 
terms which,are at most of .first order in this variable, we have, 

a4b1 1 
ikz-icz12-ika4b4z+i 

x exp{ -G 3a4 ( x z + x i )  -z kc ( x 2 + x i )  + (~+i )  a4b2 1 kc(x2+xi) 

6a4 a4b2 1 9a4 
icz + 4 i k c 2 z ( ~ + ; )  + 7 C +2kc - 4kc 

(5.20) 

where we have set za=O, without loss of generality. Expanding the last exponential 
term into its infinite power series, rearranging the z-dependent terms and then 
resumming, yields 

a4b2 1 
ikz-iczl2-ika4b4z+i 

xexp( - ~ ( x ~ + x i ) - z ( x ~ + x i ) +  3a ' kc 

_- (x"&) 3a4k 4c 3 
[ (:24 (a: :) a4k 1 x i+ma --'4kc - - (xz+x: )  e~icz+O(e-zcz) . 

C 

(5.21) 
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FigureS. The lowest-order-mode field profile for two 
for which b=&lnoanda=n,/(LoV!7). 

. ,  

coupled graded-index waveguides 

Comparing the above result with the standard eigenfunction expansion of the 
propagator (Feynman and Hibbs 1965) 

DI 

W ,  z;xo, zo) =E ~ ~ ( ~ ) ~ ~ ( X O ) ~ ~ [ ~ " ( Z - ~ ~ ) I  (5.22) 

where q(x) corresponds to any one of the Cartesian components of the electric, 
magnetic field vector, the magnetic vector potential, or the scalar potential, we can 
see that the lowest-order-mode propagation constant and field profile predicted by our 
method are given by 

l l = O  

3a4 bo= k -  cl4- ka4b4+ a4b21c-- 4k2  (5.23) 

(5.24) 

respectively. A typical plot of q,,(x) against x is shown in figure 5. It is worth pointing 
out that the two peaks in the field distribution occur at x= +d/2, while the corres- 
ponding peaks in the refractive index distribution occui at x= i d .  This shifting of the 
position of the peaks of the field amplitude towards each other is a consequence of the 
strong coupling between the two waveguides. Most conventional analyses of coupled 
waveguides (e.g. Snyder and Love 1983) consider the unperturbed fields of each guide 
in isolation and estimate the coupling parameter c by finding an overlap integral 
between the modes of the two waveguides. Clearly the presence of this significant 
shifting of the field maxima makes the implicit assumption involved in tht. conven- 
tional coupled mode analyses invalid: we cannot define in any meaningful way the 
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modes of a single waveguide in the presence of a second waveguide in close proximity. 
The propagation constant of the first excited odd mode is finally given by, 
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3a4 
~,=k-5cI4-ka4b4+a4b2lc--  4kc2' (5.25) 

Because of the fact that the variational technique optimizes the fit between the lowest- 
order-mode propagation constants of the exact and trial refractive index distributions, 
the modal field distributions for higher-order modes which we can extract are 
necessarily much cruder approximations to the true eigenfunctions. This shortcoming 
manifests itself even more strongly in the case under study, since here we cannot even 
write down an expression for the field profile of the first excited mode. This is due to 
the presence of the term ( a 4 k / c ) ( x 2 + x ~ )  in the expression for ql(x)qT(xo), (cf 
equation (.5.21)), which is not separable in the variables x and xo. The expression for 
the propagation constant of this mode (5.25) provided by the variational technique is 
however expected to be an accurate upper bound, since the product ql(x)q:(xo) is 
orthogonal to the corresponding lowest-order-mode product q o ( x ) q ~ ( x o )  for both the 
exact and approximate eigenfunctions qo(x)  and ql (x)  (Sakurai 1985). In spite of this 
failure of the variational method, the presence of a common factor xxo in (5.21) 
enables us to predict that the first excited mode of the coupled waveguide system must 
have a node at x = 0. 

Since the lowest-order mode is an even mode and the first excited mode is an odd 
mode, their sum and difference turn out to represent wave distributions which are 
localized in the waveguides centred at the points x = +b and x = -b ,  respectively. The 
propagation constant difference A@=po-,81 can be seen from expressions (5.23) and 
(5.25) to be given by Aj3=c, which confirms that the propagator expression (5.2) 
predicts the periodic exchange of energy between the two coupled waveguides, with a 
beat length equal to 2 d c .  

6. Two non-parallel, coupled graded-index waveguides: speculations on a possible 
way forward 

We have so far seen that Feynman's variational method requires that in order to 
obtain the optimum parameter c for a given waveguide separation distance 26, we 
must define a propagation constant bo which we maximize with respect to c. It is not 
possible to generalize this method to the case when c and b are functions of the 
paraxial propagation distance z, because in this case is not a quantity which can be 
defined in any sensible way (Snyder and Love 1983). Furthermore, even if it were 
possible to define some quantity which should be maximized with respect to c ( z ) ,  the 
resulting calculation would involve calculating a functional derivative with respect to 
c ( z ) ,  while at the same time taking into account the functional dependence off(z, 2,) 
on c(z). We are currently exploring ways of doing this, and we will not consider it any 
further in this paper. 

One way forward is to make the conjecture that we can match the exact and trial 
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parabolic refractive index distributions in each and every transverse plane to the z- 
axis, and so write 

c(a, b(z ), k )  = 4 2 )  . .  

It should be clear at this stage that substituting expression (6.1) into the propagator 
(5.2) will give nonsense, unless the parameter b(z)  varies sufficiently slowly with z so 
that the expression 

holds approximately for all values of z in the range of interest. Another way of 
expressing the criterion (6.2) is to write it in the form db(z)ldzQl. When the above 
criterion is satisfied, the waveguide system under study is undergoing what Burns and 
Milton (1990) have described as an adiabatic waveguide transition, and in this case the 
concept of local normal modes becomes applicable. 

Obviously, the adiabatic approximation involves making two distinct assumptions: 
First we make a conjecture (6.1) which determines the function c ( z ) ,  and then we 
substitute this result into the expression for the propagator of two parallel waveguides 
(5.2). Our approach allows us to make an improved adiabatic approximation in the 
sense that after determining the function c ( z )  in (6.1), we can substitute it into the 
differential equation (4.3) and find flz, zo). Explicit knowledge of the function 
flz, zo), then enables us to determine the full expression (4.15) for the propagator of 
the system of two coupled waveguides with a variable spacing. The difl'erential 
equation forflz, zo) which we need to solve, is then 

(6.3) 
~ ~ 

Its solutions must satisfy the boundary conditions (4.4). Although it may be diificult to 
find closed-form solutions of the differential equation (6.3) for a number of separation 
functions b(z), the asymptotic expansion of c ( z )  in the limit of small tor even the use 
of the WKB approximation may result in closed-form solutions for f ( z ,  zo). This 
calculation is clearly very lengthy and is at present in progress. We hope to report on 
this in a future publication. 

7. Conclusions 

In this paper we have presented a refractive index model for a coupled, graded-index 
waveguide system in which the spacing between the two waveguides is variable. This 
model is described mathematically by equation (2.2) and is plotted in figure 2@). The 
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most important feature which we have tried to build into this model is that the region 
between the two waveguides should have a refractive index which decreases rapidly 
when the separation of the two waveguides increases. 

We have applied the path-integral formalism to the coupled waveguide system in 
conjunction with the Feynman variational technique in order to obtain an approxi- 
mate closed form for its propagator. The trial refractive index distribution which we 
used in the variational technique was that of an infinite parabolic refractive index 
tapered waveguide of arbitrary geometry. The closed-form expression for the vari- 
ationally obtained approximate propagator of the coupled waveguide system with an 
arbitrary spacing is, to the best of our knowledge, entirely new. 

The special case of the propagator of the system of two parallel coupled wave- 
guides was then considered in some detail, and new results were obtained for the beat 
length of the two waveguides, together with information on the propagation constants 
and physically sensible mode field profiles of the two lowest-order modes of this 
structure. On theoretical grounds, we suggest that for strong and intermediate 
strengths of the coupling, our results are likely to predict a better approximation for 
the beat length compared with that produced by other analyses which largely are 
relevant to weak coupling problems. 

Finally, we have identified the shortcomings of Feynman's variational technique in 
determining the propagator of two coupled waveguides of varying separation, and we 
have proposed an ansatz for determining the propagator of two waveguides which 
separate adiabatically. Work on this is currently in progress. 

Work is in hand on the comparison of OUT predictions with the predictions of 
standard numerical methods such as the beam propagation method applied to our 
model refractive index distribution. 
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Appendix 1. The determination of the characteristic functional CP 

Using the definition of the average 0) given in equation (4.7) and the definition of Q, in 
(4.8), we can see that the numerator of the expression for @ is given by, 

The above path integral is the propagator of a forced quantum mechanical harmonic 
oscillator for which the external force g and the spring stiffness c are both arbitrary 
functions of time, which in this case corresponds to the spatial coordinate variable 5. 
To the best of our knowledge this quantum mechanical problem has never been solved 
in the past, possibly because it does not apply to any physical problem of interest in 
mainstream physics. The propagator (Al.l) only differs from that in (4.1) by the 
presence of a term in the exponent which is linear in ~ ( 5 ) .  Using the arguments given 
by Feynman and Hibbs (1965) and Schulman (1981) for evaluating quadratic func- 
tionals, the path integral in (Al.l)  can be readily evaluated to give, 

(A1.2) 
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where f is defined in (4.3) and SGO is the optical path length of the ray path X(5) 
prescribed by geometrical optics: 

(A1.3) 

Using Fermat’s principle (Born and Wolf 1980), we can immediately see that the 
geometrical optics ray path X(5) is the solution of the Euler-Lagrange equation 
(Jeffreys and Jeffreys 1956) 

(A1.4) 

and satisfies the boundary conditions 

X(Z0) =xo and X ( 2 )  =x.  (A1.5) 

The closed-form solution for X(5) can be found by writing it as 

X(5)=X,(5) +xm (A1.6) 

where X&) satisfies the homogeneous differential equation (A1.4) with the inhomo- 
geneous boundary conditions (A1.5), and X&) satisfies the inhomogeneous differen- 
tial equation (A1.4) with homogeneous boundary conditions. By virtue of the fact that 
the function f(z, zo) satisfies the’same differential equation (4.3), and the boundary 
conditions (4.4), we may express X,(C) in terms off@, za), as 

(A1.7) 

X&) can be easily determined using the Green function, G(5; C’), defined by 

(A1.8) 

This Green function can also be expressed in terms off(z, zo). It is a straightforward 
matter to show that 

The function X&) is then given by 

(A1.9) 

(A1.10) 
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Combining the results (A1.7), (A1.9) and (AlJO), we obtain the following expression 
for the geometrical optics ray path X(<), 

C C Constantinou and R C Jones 
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-zr dCg(51fG zo)rdC’g(C’)flz. c 5’) 
ro 

-21. d5g(C1f(z9 C ) r  dCfg(CWCf, zd} .  (A1.12) 

All the integrals containing the term -cyC) in the expression for So, above can be 
evaluated by parts. Since it would be too tedious and lengthy to reproduce such 
calculations even in an appendix, we demonstrate the detailed evaluation of only one 
term, in order to illustrate the method used. All of the above integrals can be 
performed using the same general approach. Let us consider the evaluation of the 
integral, J ,  defined below, and which appears in the sixth and seventh lines of 
equation (A1.12), i.e. 

ZO 9 

The defining differential equation (4.3) for the function f lz ,zo)  ,can be used to 
substitute for -2(C)f(c, zo) in the above expression, to give 

(A1.14) 

Integrating the second term in the integrand in (A1.14)~by parts, finally yields 

(A1.15) 

Using the boundary conditions (4.4) forf(z, zo), the above expression then simplifies 
to, 

(A1.16) 

The same general approach can be used to evaluate all the integrals in (A1.12). If we 
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now use the expression for the Wronskian off(z, to) (appendix 2), we can group some 
of the resulting terms together to finally obtain 
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(A1.17) 

The above expression for the optical path length can be further simplified if we use the 
explicit form (A1.9) for the Green function (A1.8), to get 

1 .alnf(z,r,) 1 ,alnf(z,zo) xxo -- --,Yo 
2 azo f ( z , z0 )  S,,=~x- a t  

(A1.18) 

Using equations (4.3), (A1.2) and (Al.lS), we arrive at the following expression for 
the characteristic functional @: 

(A1.19) 

, ,: 

Appendix 2. Some properties of the functionfiz, &) 

In we we have shown that the function f(z, zl,) obeys the differential equation (4.3) 
together with the boundary conditions (4.4), which we rewrite below: 

f(z= 2 0 ,  ti)) =o and 

We denote by Bl(C) and Zz(C) the two 
second-order ordinary differential equation 

(A2.1) 

(A2.2) 

linearly independent solutions of the 

Fitting the boundary conditions (A2.2) results in, 
S,(t)B&o) - Sl(211)Z2(2) 

f@, zll) = ~;(z,l)~2(zo) - E~(z~l)E;(zl,) 

(A2.3) 

(A2.4) 
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where a prime represents a differentiation of the appropriate function with r(espect to 
its argument. It should be noted that the denominator in the expression (AZ.4) for 
flz, zo)  is the negative of the Wronskian of 8,(5) and E&). By virtue of the fact that 
the differential equation (A2.1) has no first derivative term in it, the Wronskian 

is independent of 5 (Morse and Feshbach 1953). Making use of this fact it is easy to 
show that 

W M Z ,  5),flC, zo)}=f(z>zo). (A2.6) 

A very important symmetry property of f(z, zo) which follows directly from (A2.4) is, 

f(Z,Zo) = -f(zo, 2) .  W.7)  
Furthermore, if we define 

equation (A2.4) further implies that 

Finally. the function f(z, z,,) also obeys the differential equation 

with boundary conditions 

(A2.10) 

(A2.11) 
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